An alternative to the horizontality condition in superfield approach to BRST symmetries

نویسنده

  • R. P. Malik
چکیده

We provide an alternative to the gauge covariant horizontality condition which is responsible for the derivation of the nilpotent (anti-)BRST symmetry transformations for the gauge and (anti-)ghost fields of a (3 + 1)dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. The above covariant horizontality condition is replaced by a gauge invariant restriction on the (4, 2)-dimensional supermanifold, parameterized by a set of four spacetime coordinates x(μ = 0, 1, 2, 3) and a pair of Grassmannian variables θ and θ̄. The latter condition enables us to derive the nilpotent (anti-)BRST symmetry transformations for all the fields of an interacting 1-form 4D non-Abelian gauge theory where there is an explicit coupling between the gauge field and the Dirac fields. The key differences and striking similarities between the above two conditions are pointed out clearly. PACS numbers: 11.15.-q; 12.20.-m; 03.70.+k

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Alternative To Horizontality Condition In Superfield Approach To BRST Symmetries

We provide an alternative to the gauge covariant horizontality condition invoked on a six (4, 2)-dimensional supermanifold where a four (3+1)-dimensional (4D) 1-form interacting non-Abelian gauge theory is considered in the framework of superfield approach to BRST formalism. This covariant horizontality condition (which is responsible for the derivation of the nilpotent (anti-) BRST symmetry tr...

متن کامل

A Generalization Of Horizontality Condition In Superfield Approach To Nilpotent Symmetries For QED With Complex Scalar Fields

We provide a generalization of the horizontality condition of the usual superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to obtain the nilpotent (anti-)BRST symmetry transformations for all the fields of a four (3 + 1)-dimensional interacting 1-form U(1) gauge theory (QED) within the framework of the augmented superfield formalism. In the above interacting gauge theory, there i...

متن کامل

A generalization of the horizontality condition in the superfield approach to nilpotent symmetries for QED with complex scalar fields

We provide a generalization of the horizontality condition of the usual superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to obtain the (anti-)BRST symmetry transformations for all the fields of a four (3 + 1)-dimensional interacting 1-form U(1) gauge theory (QED) within the framework of the augmented superfield formalism. In the above interacting gauge theory, there is an expli...

متن کامل

Superfield approach to nilpotent symmetries for QED from a single restriction: an alternative to the horizontality condition

We derive together the exact local, covariant, continuous and off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the U(1) gauge field (Aμ), the (anti-)ghost fields ((C̄)C) and the Dirac fields (ψ, ψ̄) of the Lagrangian density of a four (3+1)-dimensional QED by exploiting a single restriction on the six (4, 2)dimensional supermanifold. A set of four ev...

متن کامل

Superfield approach to nilpotent symmetries for QED from a single restriction: an alternative to horizontality condition

We derive together the exact local, covariant, continuous and off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the U(1) gauge field (Aμ), the (anti-)ghost fields ((C̄)C) and the Dirac fields (ψ, ψ̄) of the Lagrangian density of a four (3+1)-dimensional QED by exploiting a single restriction on the six (4, 2)dimensional supermanifold. A set of four ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007